Home

IQR Calculator

Sample Datasets

Calculation Steps

Calculation History

TimeData PointsIQR

Calculate IQR, identify outliers, and visualize data distribution with our precise Interquartile Range Calculator. Learn formulas, interpretation methods, and statistical applications effortlessly.

Interquartile Range Calculator: Complete Guide

What Is It?

The Interquartile Range (IQR) Calculator is a statistical tool that measures data dispersion by analyzing the middle 50% of values. It calculates:

  • Quartiles (Q1, Q3)
  • Median
  • IQR (Q3-Q1)
  • Outlier boundaries
  • Visual data distribution

Key Formulas

  1. Q1 Calculation:
    Position = (n+1)/4
    Value = Linear interpolation if position isn’t integer

  2. Q3 Calculation:
    Position = 3(n+1)/4
    Value = Linear interpolation if position isn’t integer

  3. IQR Formula:

    IQR=Q3Q1IQR = Q3 - Q1
  4. Outlier Boundaries:
    Lower Bound = Q1 - 1.5×IQR
    Upper Bound = Q3 + 1.5×IQR

How to Use

  1. Input Data: Enter comma-separated values (e.g., 5,12,7,18,22)
  2. Automatic Calculation: Results update in real-time
  3. Interpret Output:
    • Box plot visualization
    • Color-coded outlier indicators
    • Detailed quartile values
  4. Advanced Features:
    • Sample datasets for quick testing
    • Calculation history tracking
    • Step-by-step methodology

FAQs

Q: Why use IQR instead of range?
A: IQR eliminates distortion from extreme values, providing more reliable dispersion measurement.

Q: How are quartiles calculated?
A: We use the exclusive median method (Type 7) matching most statistical software.

Q: What defines an outlier?
A: Values falling below Q1-1.5×IQR or above Q3+1.5×IQR.

Terminology

  • Quartile: Values dividing data into four equal parts (Q1=25th percentile, Q3=75th percentile)
  • Median: Middle value (50th percentile)
  • Whiskers: Lines extending to min/max non-outlier values
  • Data Dispersion: Spread of dataset values
  • Five-Number Summary: Min, Q1, Median, Q3, Max

Best Practices

  1. Clean data before analysis (remove NA values)
  2. Compare IQR across similar datasets
  3. Always visualize distributions alongside calculations
  4. Consider data context when interpreting outliers
Calculator